Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 21, 2026
-
Abstract Explaining the maintenance of genetic variation in fitness‐related traits within populations is a fundamental challenge in ecology and evolutionary biology. Frequency‐dependent selection (FDS) is one mechanism that can maintain such variation, especially when selection favours rare variants (negative FDS). However, our general knowledge about the occurrence of FDS, its strength and direction remain fragmented, limiting general inferences about this important evolutionary process. We systematically reviewed the published literature on FDS and assembled a database of 747 effect sizes from 101 studies to analyse the occurrence, strength, and direction of FDS, and the factors that could explain heterogeneity in FDS. Using a meta‐analysis, we found that overall, FDS is more commonly negative, although not significantly when accounting for phylogeny. An analysis of absolute values of effect sizes, however, revealed the widespread occurrence of modest FDS. However, negative FDS was only significant in laboratory experiments and non‐significant in mesocosms and field‐based studies. Moreover, negative FDS was stronger in studies measuring fecundity and involving resource competition over studies using other fitness components or focused on other ecological interactions. Our study unveils key general patterns of FDS and points in future promising research directions that can help us understand a long‐standing fundamental problem in evolutionary biology and its consequences for demography and ecological dynamics.more » « less
-
Abstract Predicting if, when, and how populations can adapt to climate change constitutes one of the greatest challenges in science today. Here, we build from contributions to the special issue on evolutionary adaptation to climate change, a survey of its authors, and recent literature to explore the limits and opportunities for predicting adaptive responses to climate change. We outline what might be predictable now, in the future, and perhaps never even with our best efforts. More accurate predictions are expected for traits characterized by a well-understood mapping between genotypes and phenotypes and traits experiencing strong, direct selection due to climate change. A meta-analysis revealed an overall moderate trait heritability and evolvability in studies performed under future climate conditions but indicated no significant change between current and future climate conditions, suggesting neither more nor less genetic variation for adapting to future climates. Predicting population persistence and evolutionary rescue remains uncertain, especially for the many species without sufficient ecological data. Still, when polled, authors contributing to this special issue were relatively optimistic about our ability to predict future evolutionary responses to climate change. Predictions will improve as we expand efforts to understand diverse organisms, their ecology, and their adaptive potential. Advancements in functional genomic resources, especially their extension to non-model species and the union of evolutionary experiments and “omics,” should also enhance predictions. Although predicting evolutionary responses to climate change remains challenging, even small advances will reduce the substantial uncertainties surrounding future evolutionary responses to climate change.more » « less
-
Abstract AimGlobal interspecific body size distributions have been suggested to be shaped by selection pressures arising from biotic and abiotic factors such as temperature, predation and parasitism. Here, we investigated the ecological and evolutionary drivers of global latitudinal size gradients in an old insect order. LocationGlobal. TaxonOdonata (dragonflies and damselflies). MethodsWe compiled data on interspecific variation in extant and extinct body sizes of Odonata, using an already existing database (The Odonate Phenotypic Database) and fossil data (The Paleobiology Database). We combined such body size data with latitudinal information and data on biotic and abiotic environmental variables across the globe to investigate and quantify interspecific latitudinal size‐gradients (“Bergmann's Rule”) and their environmental determinants. We used phylogenetic comparative methods and a global published phylogeny of Odonata to address these questions. ResultsPhylogenetic comparative analyses revealed that global size variation of extant Odonata taxa is negatively influenced by both regional avian diversity and temperature, with larger‐bodied species in the suborder Anisoptera (dragonflies) showing a steeper size‐latitude relationship than smaller‐bodied species in the suborder Zygoptera (damselflies). Interestingly, fossil data show that the relationship between wing size and latitude has shifted: latitudinal size trends had initially negative slopes but became shallower or positive following the evolutionary emergence and radiation of birds. Main ConclusionsThe changing size‐latitude trends over geological and macroevolutionary time were likely driven by a combination of predation from birds and maybe pterosaurs and high dispersal ability of large dragonflies. Our study reveals that a simple version of Bergmann's Rule based on temperature alone is not sufficient to explain interspecific size‐latitude trends in Odonata. Our results instead suggest that latitudinal size gradients were shaped not only by temperature but also by avian predators, potentially driving the dispersal of large‐sized clades out of the tropics and into the temperate zone.more » « less
-
Abstract Numerous mechanisms can promote competitor coexistence. Yet, these mechanisms are often considered in isolation from one another. Consequently, whether multiple mechanisms shaping coexistence combine to promote or constrain species coexistence remains an open question.Here, we aim to understand how multiple mechanisms interact within and between life stages to determine frequency‐dependent population growth, which has a key role stabilizing local competitor coexistence.We conducted field experiments in three lakes manipulating relative frequencies of twoEnallagmadamselfly species to evaluate demographic contributions of three mechanisms affecting different fitness components across the life cycle: the effect of resource competition on individual growth rate, predation shaping mortality rates, and mating harassment determining fecundity. We then used a demographic model that incorporates carry‐over effects between life stages to decompose the relative effect of each fitness component generating frequency‐dependent population growth.This decomposition showed that fitness components combined to increase population growth rates for one species when rare, but they combined to decrease population growth rates for the other species when rare, leading to predicted exclusion in most lakes.Because interactions between fitness components within and between life stages vary among populations, these results show that local coexistence is population specific. Moreover, we show that multiple mechanisms do not necessarily increase competitor coexistence, as they can also combine to yield exclusion. Identifying coexistence mechanisms in other systems will require greater focus on determining contributions of different fitness components across the life cycle shaping competitor coexistence in a way that captures the potential for population‐level variation.more » « less
An official website of the United States government
